
P H Y S I C A L R E V I E W V O L U M E 1 3 2 , N U M B E R 6 15 D E C E M B E R 1 9 6 3 

Third-Order Coulomb Wave Function and Single Quantum Annihilation5* 

C. O. CARROLLf AND R. F . O'CONNEIXj 

University of Notre Dame, Notre Damey Indiana 
(Received 5 August 1963) 

An expression for the third-order Coulomb wave function, correct to order (aZ)3 for all momenta and 
energies, is derived. Using this wave function the total cross section for single-photon emission resulting from 
a positron annihilating with a i^-shell electron (single quantum annihilation), valid to relative order (aZ)2, 
is calculated numerically. The results for lead are compared to the exact answer of Jaeger and Hulme, and the 
results for silver are also given graphically. The effect of the third-order term in the cross section is found to 
be significant, especially for low and intermediate positron energies. The cross section for lead is found to be 
qualitatively correct while that for silver is essentially exact. The question of how to treat the normalization 
factors of the various wave functions is also discussed. 

I. INTRODUCTION 

JOHNSON and Mullin1 have derived a modification 
to the Sommerfeld-Maue2-4 (SM) wave function 

valid to order (aZ)2. However, when using this modified 
SM wave function, one is able, in general, to obtain 
the cross section only to relative order aZ. Since in 
many problems one is interested in applying the result 
to heavy elements, one may expect a significant con
tribution from the third-order term (and possibly 
higher order terms also) in the cross section. For this 
reason, it is desirable to obtain a further modification 
to the SM wave function. 

The third-order Coulomb wave function, valid to 
order {aZf for all values of /3, is derived in Sec. I I . 
In Sec. I l l we make use of the third-order wave function 
to calculate the total cross section for single-photon 
emission resulting from a positron annihilating with a 
iT-shell electron (single quantum annihilation). The 
second- and third-order cross sections for lead are 
compared with each other and with the exact numerical 
calculation of Jaeger and Hulme.5 Graphical results 
for silver are also presented. Section IV contains a dis
cussion of the results obtained. 

II. CALCULATION OF THE THIRD-ORDER 
COULOMB WAVE FUNCTION 

The solution of the Dirac equation in momentum 
space which behaves asymptotically like a plane wave 
plus an outgoing spherical wave is given by 

S#(k) r<t>(s)ds 
0(k) = 8(q f cp)tt(p)+_ / 

where 
k2-p2-iej qks

2+\2 (1) 

q0&=a— b, H(k) = a'k+my^+W, and 8=(aZ/2ir2). 
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The screening parameter X is set equal to zero every 
where except where divergences or ambiguities in 
choosing phases may arise. The radial wave function 
^(r) is given by 

^ ( r ) = /<£(k)exp(ik-r)dk. 

The solution of Eq. (1) is given by6 

*(k )=£ (aZ)"*„(k), 
n=0 

where 

and 

*»(k) = 

1 
0i(k) = gfcp0o(k), 

2pv 

1 H(k) r<j>n-i($)ds 

-l€ P qks
2+\2 

(2) 

(3) 

(4a) 

n>2, (4b) 

: a - q . 

2w2 k2-p2-

v = aZW/p, and q= 

Gorshkov6 shows that the nonrelativistic wave function 
is given by 

\f/0(r) = NM exp(ip-r)iFi(w>; 1; ipr--i$-x)u(y), (5) 

where 

7V=exp(7rv /2 ) r ( l -^ ) , 

M= exp[iv ln.(2p/X)2 exp[— ivC~], 

and C is Euler's constant. From Eq. (2): 

*o(k) = -—I ^o(r) exp(—ik'r)dr. (6) 

Thus, all screening divergences in the nonrelativistic 
wave function are isolated in the form of a phase 
factor M. From the convergence of the integrals (4b) 
as X—»0 it follows that no other divergences will 

6 V. G. Gorshkov, Zh. Eksperim. i Teor Fiz. 40, 1481. (1961) 
[translation: Soviet Phys.—JETP 13, 1037 (1961)]. 
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appear. Hence it follows that the only screening di- the order of integration, 
vergence in the exact Coulomb wave function will be 
contained in the phase factor M. It is easily shown that 
the quantity / 

qSiP0o(si)dsi 

0o(k)+aZ01(k)+a2ZV2(k), 

apart from an over-all phase factor, is just the Fourier 
transform of the modified SM wave function.1 From 
Eq. (4b) we have 

qss
2+\2 

= 2vNM 
dX'tpCLsp—iX'p) 

(qsp
2+\/2)(s2+m2) 

*(P), (13) 

where 

*s(k)=-
1 H(k) 

S^vptf-f — tej 

dsH(s) 

(<Z*S
2+X2)(s2+M22) 

lj,i=\'—ip. 

From Eqs. (7) and (13) we obtain 

X 

where 
/

<Zsi2>90 

+X2) 
(7) *8(k) = 

NM H(k) 

jJL2=€—ip. X 
Using the contour integral representation for the con
fluent hypergeometric function7 

/ d\' 
Wpk2-p2-ieJx 

dsH(s)(pqsp—iyp) 

(qks
2+\2) (*2+Mi2) (*2+M22) (<?S/+X/2) 

*(p). (14) 

1 /-(°'1+> dx/ —x\ia 
1 r^^) dx/-x\ 

iFi(/a;l;») = — / —( 
2wi J x\l — x/ 

we obtain 

NM /-(0'1+> dx/ -x\iv 1 
<Ao(si) = — 

2wi J x\l — x/ 

(8) 

Since there are 2 scalar factors in the denominators of 
Eq. (14), we see that the most complicated integrals 
encountered are vector and scalar 3-denominator in
tegrals, whose solutions are well known.8'9 Using partial 
fractions and performing the volume integration we 
finally obtain 

2irH 

1 

*8(k) = 
NM HQs) 

2TT2 k2-p2-

r°° Id\' 

J\ X'-2* -lip 
-«(p), (15a) 

X-

where 

Setting 

1 1 d 
J = -

dB£(qSiP+Vxy-(B+ien 

B=px. 

q s i p ^s i 

2TT2; xdBj (gssl
2+X2)[(qslp+px)2- {B+ief] 

and using the identity 

d\ 

' x 

we find that 

«(p), (9) 

\-P.+B+ik/ A i V - (B+iX'f 

J = ipVB 

d\' 

,(10) 

(ID 

(12) 

where 

I=M+lW(W~yAm)S2+m(Wyi-m)^']/p2, (15b) 

A7 = — [12A+(^2-^2)2-3^2(^2+^2) 
4A 

+2^2(^2-2p-k)+2X ,2(^2+p-k)]— 

2TT2 

-1(03+ (a-k+W74-W
;')(TF-W74) (^2-^)3) 

^ AJT2 
(^2+p.k) , (15c) 

2A 2TT2 

1 r AK2 J-] 
32=-\ ipP'k W<7 2 -P 'kX / 2 )— 

2J 
AL 2TT2 2TT2-

p k 
'x Ps

2-(B+i\')2 

where 
Ps=qS3j+B. 

From Eqs. (9) and (12) we obtain, after interchanging 

7 A. firdelyi et al., Higher Transcendental Functions, Bateman 
Manuscript Project (McGraw-Hill Publishing Company, Inc., 
New York, 1953), Vol. 1, p. 272, Sec. 6.11.1, Eq. (3). 

i>2+p-k 

(£2+p.k)r /g2+X'2\ / M I 2 + ^ 

fa, (15d) 

2A 

A=(pXk)2 , LK^Kn-Kn, q = k - p , (15f) 

8 H. Mitter and P. Urban, Acta Phys. Austriaca 7, 311 (1953). 
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^ /IH+ik\ TT2 /X+i(k—p)\ 
j r 2 1 = - l n ( ) , # 2 2 = - l n ( ) 

ik \ni—ik/ ik \\—i(k+p)/ l) 
S+R 

, (15g) 
where11 

R L.S-i?+X(Mi2+/>2)J 

S = - ; / > ( ? 2 + X ' 2 ) + A ' ( F - ^ ) , (15i) 

(15j) 

The X term is left in Eq. (15g) so that one may choose 
the proper phase. For k unequal to p one may drop the 
X terms in Eq. (15h). There is also a contribution to 
the third order from <£2 (k). Denoting this contribution 
by 023(k) we find 

NM HQL) W 
02

3(k) = (W~my4)^2u(p), (16a) 

where 

-L 

2X2 k*-p2-ie f 

\'d\' 

x (<f+X'2)W+£2) V i 2 + ^ / 
(16b) 

Thus, we may write the third-order Coulomb wave 
function as 

<Mk)=<Mk)+<*>2
3(k). (17) 

The asymptotic form of the Coulomb scattering wave 
function, correct to order a3Z3, may be written10 

^(r) —> exp ip-r—iv ln( 2pr sin2- j L(p) 

-\ exp[ipr+iv l n (2^ r )> (p ) , (18) 

where 
cos0=p' -p/^ 2 , and pf=pr/r. 

I t is easily shown that1 

/(<9) = 2TT2 lim (&2-^2)0(k) , (19) 

where <£(k) is given by Eq. (1). We find that our result 
for f(6) agrees with that of Johnson and Mullin10 

except for an over-all phase factor. 

III. CROSS SECTION FOR SINGLE 
QUANTUM ANNIHILATION 

The matrix element for a positron annihilating with 
a iT-shell electron with the subsequent emission of a 
single photon of momentum k is given by 

M = — ( J [ ^ 2 , a - e e x p ( - * - r ) ^ i ] , (20) 

10 W. R. Johnson, T. A. Weber, and C. J. Mullin, Phys. Rev. 
121, 933 (1961). 

r / l - 7 \ w a - n 
^ 1 = iV>r- i exp(-maZr)\ 1+il J \u(p0 (21) 

(15h) describes the i£-shell electron, 

r ( l + 7 ) ( 2 w a Z ) 2 ^ 1 l 1 / 2 

Nl==\ y=(l-a*Z2Y*, 
L 87rr(27+l) J 

and u(pi) is the Dirac plane-wave spinor for a particle 
of momentum pi which we take to be zero. The polari
zation of the photon is given by the unit vector e, and 
yp2 is the positron wave function which behaves asymp
totically like a plane wave plus an outgoing spherical 
wave. The charge conjugate wave function \//+ is 
defined by12 

^ = ( ^ T 4 T 5 ^ ( - a ) ) c - c - , (22) 

where ex. denotes complex conjugate, \f/(—a) is an 
electron wave function with the sign of the Coulomb 
interaction reversed, and B is a unitary matrix satisfying 

B7liB-i=7™-, M = 1 , - " 4 , (23a) 

BT=-B-K (23b) 

(#y4Y5C^(p))c-c-= G ^ + ( p ) , (24a) 

C B Y 4 Y 5 Y 4 ^ ( P ) ) C ' C - = - Y 4 ^ + ( p ) , (24b) 

and 

Thus, using 

and 

we see from Eq. (22) that we may obtain the positron 
wave function from the corresponding electron wave 
function by making the replacements 

a—> — a, (25a) 

Y 4 - > - Y 4 , (25b) 

i—>—i, (25c) 

and interpreting the spinor as being that for a positron. 
Setting 

^ = ^ ¥ + ^ 2 + ^ 3 , (26) 
then13 

^SM=N2exp(—ipr)( 1 ) 
V 2iW/ 

X i F i ( * V ; l ; -

N2a
2Z2 / ^ k e x p ( - ; k - r ) 

and 
pr+ip-i)u(p), (27) 

X 2 = 
2TT2 

X 

7- k2-f+ie 

dut-ivAjpM+f-k*} 

o Gu2+g2)(M2+2^M+£2-^2) 
«G>), (28) 

1 1H. A. Bethe and E. E. Salpeter, Quantum Mechanics of 
One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), 
p. 69. 

12 S. S. Schweber, An An Introduction to Relativistic Quantum 
Field Theory (Row, Peterson and Company, New York, 1961), 
pp. 205-6. 

13 See Ref. 1. When one makes the transformations (25) on the 
given electron wave functions, one obtains Eqs. (27) and (28). 
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where 

i V 2 = e x p ( - ^ / 2 ) r ( l - ^ ) , v=&ZW/p, 

and 

From Eqs. (2) and (17) we have 

X3 = '•-cf&Utr' (k) exp(—jfc-t)dk, (29) 

where #3r'(k) is related to 03r(k) by the transformations 
(25b) and (25c). The third-order term in the matrix 
element cannot be obtained in closed form and thus 
one must resort to numerical methods. 

IV. DISCUSSION OF RESULTS 

The total cross section for single quantum annihila
tion was computed numerically on the IBM-1620 
computer at Notre Dame. Figure 1 shows a comparison 
between the exact answer of Jaeger and Hulme and 
our second- and third-order cross sections for lead. In 
Fig. 2 the second- and third-order cross sections are 
compared for silver. One sees from Figs. 1 and 2 that 
the third-order term in the cross section has a significant 
effect, being most pronounced for low and intermediate 
positron energies. The third-order results for lead are 
qualitatively correct, i.e., they give the right order of 
magnitude and the general shape of the cross section. 
The ratio of the fourth-order term for silver to 
that for lead is (excluding all normalization factors) 
[Z(Ag)/Z(Pb)] 3=0.2. Thus, we expect that the third-
order result for silver gives good quantitative agree
ment with the exact answer. On the basis of these 
results and the third-order calculations of Johnson, 
Weber, and Mullin10 for the Coulomb scattering of 
polarized electrons, it would seem that for large Z one 
gets qualitative agreement with the exact answer, 
while for intermediate or low Z one essentially repro
duces the exact answer when retaining only the first 
three terms in an aZ expansion. 

I t is seen that the difference between our second-
and third-order result (approximately 20%) is less than 
the difference between our third-order result and the 
exact answer (approximately 70%) for W / w = 2 . 8 , 

FIG. l.Thesecond-
and third-order cross 
sections and the ex
act answer of Jaeger 
and Hulme for lead 
(Z=82). 

FiG.2.Thesecond-
and third-order cross 
sections for silver 
(Z-47) . 

while as W/m becomes smaller this latter difference 
decreases rapidly. Since we cannot determine the spe
cific structure of the terms which we have neglected 
without actually calculating them, it is difficult to 
determine their effect on the cross section. However, 
in view of the large discrepancy at high energies be
tween our third-order result and the exact answer it 
would be desirable to have a more exact treatment of 
the problem in this region. 

On purely physical grounds we would expect that 
for extremely relativistic positrons we may neglect the 
binding energy of the iT-shell electron. Mathematically 
this is equivalent to setting 7 = 1 . For such energies 
the positron is described [with an error proportional to 
(1—/32)1/2—>0] by ^o(r) which asymptotically ap
proaches a distorted plane wave. Subject to the above 
approximation for very high energies we may obtain 
an exact answer. 

Since the cross section we have calculated is ex
plicitly an expansion in the parameter aZ, and since 
the normalization factors associated with the wave 
functions contain aZ, the question of how to treat 
these factors naturally arises. One possible answer is 
that since the result is an expansion in aZ, consistancy 
demands that the normalization factors be expanded 
also. However, this approach leads to negative results 
for the cross section for low energies because of the 
factor e~*v. Pratt14 performs two different partial ex
pansions of the normalization factors. The one finally 
chosen is that which apparently makes the series con
verge most rapidly. However, this approach assumes 
one knows something about the effect of the expansion 
on the terms neglected. The criterion used by Deck15 is 
whether the first three terms in an expansion ade
quately represent the function. In our calculation 
various partial expansions were tried in an attempt to 
get a best fit to the exact answer of Jaeger and Hulme. 
I t was found that when all factors were retained except 
the term 7r^/sinh7rv, a best fit was obtained. This result 
is in agreement with the conclusions presented by Deck, 
though differing slightly from the results of Pratt . The 

W/m 

14 R. H. Pratt, Phys. Rev. 117, 1017 (1960). 
16 R. T. Deck, Ph.D. thesis, University of Notre Dame 

(unpublished). 
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experimental results of Hall, Hanson, and Jamnik16 

seem to provide further justification for our treatment 
of the normalization factors (as well as Deck's treat
ment). In any case a rigorous theoretical justification 
would involve knowledge of the terms which have been 
neglected. Failing this, the treatment of the normaliza
tion factors seems to be somewhat arbitrary. Because 

16 H. E. Hall, A. O. Hanson, and D. Jamnik, Phys. Rev. 129, 
2207 (1963). 

THE simplicity of the Fermi-Thomas approxima
tion of the particle density for a fermion system 

in the ground state, which in the past has found its 
principal application to the atom, has led a number of 
investigators to develop procedures for systematically 
improving upon it ; presumably approaching, when in
dependent particles are assumed, the accurate but 
difficult to compute self-consistent field result from 
wave mechanics. The formalisms of Kompaneets and 
Pavlovskii,1 Kirzhnits,2 Golden,3 and Bar aft and Boro-
witz4 lead to a common expression (for independent 
particles), a power series in #, whose first term is the 
Fermi-Thomas density. Alfred5 has given a modifica
tion of Golden's method involving a Bromwich integral. 

I t is the purpose of this article to examine this series 
in h through an example, namely, the one-dimensional 
case for which the potential energy is a linear function 
of the displacement, i.e., 

V=ax. (1) 

A comparison with the exact analytical expression from 
wave mechanics indicates that it is only an asymptotic 
expansion, valid where the particle density is large, and 

1 A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i Teor. 
Fiz. 31, 427 (1956) [translation: Soviet Phys.—JETP 4, 328 
(1957)]. 

2 D . A. Kirzhnits, Zh. Eksperim. i Teor. Fiz. 32, 115 (1957) 
[translation: Soviet Phys.—JETP 5, 64 (1957)]. 

3 S . Golden, Phys. Rev. 105, 604 (1957); 107, 1283 (1957). 
4 G. A. Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961). 
6 L . C. R. Alfred, Phys. Rev. 121, 1275 (1961). 

of the discrepancy at high energies for lead and the 
arbitrary treatment of the normalization factors one 
of the authors (C.O.C.) has undertaken an exact calcu
lation of single quantum annihilation. 
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that, even there, important terms of an oscillatory 
nature are missing. The apparent source of error is 
brought out in the chosen method, basically that of 
Alfred, for developing the series. 

Stephen and Zalewski6 have reached similar con
clusions after a study of a simple harmonic oscillator 
system. However, it is believed that the use of the 
linear potential permits a much simpler and more 
comprehensible analysis. 

For a one-dimensional system of independent ferm-
ions in the ground state one may write 

JV 

p(e; x',x)= Z fn*(x')fn(p) 

= £^*(«')/(«,fl)^.(*), (2) 
n«=l 

where H= — (fi2/2tn)d2/dx2+V(x), \pn(x) is the normal
ized eigenfunction of H corresponding to the eigen
value E(n), which is less than E(n+1), and E(N)<e 
<E(iV r +l) . The operator f(e,H) has the property 

/ ( € , £ 0 M * ) = *»(*) for £ ( » ) < € 
= 0 for E(n)>e. 

I t can be shown7 that the form of the right side of 
Eq. (2) is invariant with respect to an orthogonal 

6 M. J. Stephen and K. Zalewski, Proc. Roy. Soc. (London) 
A270, 435 (1962). 

7 J. E. Mayer and W. Band, J. Chem. Phys. 15, 141 (1947). 
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The scheme of correcting the Fermi-Thomas particle density formula by a power series in h, procedures for 
which have been proposed by a number of authors, is examined through its application to a one-dimensional 
linear potential, which yields an analytical expression for the exact wave mechanical density for comparison. 
It is concluded that this is an asymptotic series, valid only where the particle density is large. Furthermore, 
terms of an oscillatory nature, which may very well transcend the so-called quantum corrections, are missing. 
A reason for this is offered. 


